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Purpose. This study was done to explore the relationships of both
macroscopic and molecular level physicochemical properties to in-
vivo antiarrhythmic activity and interactions with phospholipid mem-
branes for a set of cationic-amphiphilic analogs.

Methods. The 4D-QSAR method, recently developed by Hopfinger
and co-workers (1), was employed to establish 3D-QSAR/QSPR mod-
els. Molecular dynamics simulations provided the set of conforma-
tional ensembles which were analyzed using partial least squares
regression in combination with the Genetic Function Approximation
algorithm to construct QSAR and QSPR models.

Results. Significant QSAR models for in-vivo antiarrhythmic activity
were constructed in which logP (the partition coefficient), and specific
grid cell occupancy (spatial) descriptors are the main activity corre-
lates. LogP is the most significant QSAR descriptor. 4D-QSPR models
were also developed for two analog-membrane interaction properties,
the change in a membrane transition temperature and the ability of the
analogs to displace adsorbed Ca**-ions from phosphatidylserine mono-
layers.

Conclusions. Spatial features, represented by grid cell occupancy
descriptors, supplement partition coefficient, which is the most impor-
tant determinant of in-vivo antiarrhythmic activity, to provide a com-
prehensive model for drug action. The QSPR models are less significant
in statistical measures, and limited to interpretation of possible molecu-
lar mechanisms of action.

KEY WORDS: antiarrhythmics; molecular dynamics; partial least
squares regression; genetic function approximation; quantitative
structure-activity relationships.

INTRODUCTION

The voltage gated sodium channel is present in tissues that
perform the propagation of electrical impulses. In humans,
these tissues are neurons and myocardial cells. The voltage
gated sodium channel plays a major role in the depolarization
phase of an impulse (2).

A variety of substances block or inhibit the voltage gated
sodium channel and, therefore, produce both local anesthesia
and antiarrhythmic effects. From the pharmacological point of
view, antiarrhythmic drugs are usually subdivided into four
classes with several subgroups within some of the classes. Class
I antiarrhythmic agents include the sodium channel blockers. In
this respect, their mode of action cannot be distinguished from
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local anesthetics. Local anesthetics, like lidocaine, are, in fact,
widely used as antiarrhythmics (3).

Class 1 antiarrhythmics in clinical use cover a wide struc-
tural range from quinidine to relatively simple local anesthetics
like lidocaine. This paper focuses on the latter. The common
features of this sub-class of antiarrhythmics are:

i. A relatively large lipophilic moiety which often con-
sists of an aromatic system and an alkyl chain. In most cases,
the alkyl chain is attached to the aromatic part by an ester or
amide linkage.

ii. A hydrophilic group at the end of the alkyl chain, often
a tertiary nitrogen, which is protonated under physiological
conditions. However, sodium channel blockers need not be
charged, and some neutral compounds such as benzocaine or
polidocanol are also local anesthetics (3).

The underlying pharmacological event occurring at the
channel and causing its inactivation is not exactly known for
class I antiarrhythmics. Two major hypotheses concerning the
mode of action are:

i. The voltage gated sodium channel possesses a specific
binding site for antiarrhythmics. This model is, for example, sup-
ported by the stereospecific effects observed with some anti-
arrhythmics (4). Moreover, the pharmacological effect of Class I
antiarrhythmics is not the same for all compounds. Quinidine, for
example, blocks sodium channels in the open state, while lido-
caine interacts with both open and closed channels (2,5,6).

ii. The activity is due to a relatively non-specific uptake
of the substances in myocardial or neuronal cell membranes—
a hypothesis similar to the classical Meyer-Overton explana-
tion of general anesthesia (7). Changes in the thermodynamic
and dynamic properties of the membrane are believed to cause
the inhibition of sodium channels. Strong support for this the-
ory is the ability of compounds of high structural diversity to
produce the same effect (2,6,8).

In order to elucidate the structural parameters responsible
for the sodium-channel blockade, and other membrane-related
effects, a set of substituted N,N-Dimethyl-3-phenylpropyl-
amines was synthesized and subsequently tested in different
biological and biophysical systems (9,10). Antiarrhythmic
potency was assayed in Langendorff-preparations of guinea pig
hearts. The drug-effect on excitability was measured as the
drug-concentration leading to a 50% increase in threshold
intensity of 50 Hz alternating current to induce ventricular
arrhythmia (ACs, value) (11).

Biophysical methods were used to to characterize nonspe-
cific interactions of the compounds with phospholipid mem-
branes. The ability to replace “*Ca?* from phosphatidylserine
monolayers was measured as the drug-concentration causing a
50% decrease in adsorbed “*Ca?* (ICs,) (12). It has to be pointed
out, that the ICs, value does not represent the binding affinity of
a compound to a receptor protein. Rather, this measure reflects a
relatively non-specific, but nevertheless, concentration-depen-
dent uptake of a compound into phospholipid (PL) membranes,
and the subsequent displacement of Ca**-ions from their “bind-
ing sites” at the membrane/water interface (12).

The logarithm of the partition coefficient (logP) of each of
the compounds was determined by HPLC using an RP18 column
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and methanol/phosphate buffer (pH 7.4) mobile phases having
different water contents. This system was calibrated using a
series of alkylbenzene homologs with known (octanol/water)
logP values. The logP values were obtained by extrapolation of
the k’ (capacity factor) values to 100% water (9).

The influence of membrane-interacting compounds on the
thermodynamic properties of a PL membrane was monitored
via differential scanning calorimetry of liposome preparations
(13). In particular, the main phase transition temperature, T,,
was measured. For this purpose the PL dipalmitoylphosphatidic
acid proved to be most suitable, as its undisturbed transition
occurs at a relatively high temperature (337 K), and the position
of the second signal, formed upon addition of a membrane-
active compound, is independent of the molar ratio [drug/PL]
(14,15). A hypothetical explanation for this phenomenon can
be inferred by the coexistence of membrane domains consisting
of a [drug/PL] mixture at a fixed molar ratio and domains con-
taining pure PL.

The 4D-QSAR molecular modeling method was employed
to quantify the relationship between structure and antiarrhyth-
mic activity, as measured by ACs,. 4D-QSAR analysis, devel-
oped by Hopfinger and co-workers (1), in summary, consists of
first generating a sample ensemble of the conformations avail-
able to every compound in a training set using molecular
dynamics simulation, MDS. Each conformation is then aligned
in a grid cell lattice, and the grid cell occupancies of user-
defined atom-types are computed for each conformation of the
ensemble. Multiple alignments can be efficiently explored. The
resulting grid cell occupancy profile of a compound can be
regarded as a representation of its three-dimensional dynamic
behaviour. The grid cell occupancy profiles of the whole train-
ing set form an array of descriptors, similar to the one obtained
in CoMFA (16), which is subjected to data reduction using a
combination of partial least squares, PLS, (17) and a genetic
algorithm, GA, tool called the Genetic Function Approximation
(18). Consequently, 3D-QSAR equations are derived as a func-
tion of conformations, alignment and distribution of atom types.
It is this multiplicity in conformation and alignment which rep-
resents the fourth dimension of the 4D-QSAR formalism. The
utility of a combined GA/PLS approach in molecular modeling
has recently been illustrated in publications by Rogers and
Dunn (19) and Hasegawa et al. (20).

The 4D-QSAR method was also applied to establish quan-
titative structure property relationships, QSPRs, for the biophys-
ical properties, i.e. phase transition temperature of DPPA
liposomes (T,) and replacement of **Ca%* from phosphatidyl-
serine monolayers (ICs).

MATERIALS AND METHODS
The SAR Dataset

The chemical structures of all analogs used in the 4D-
QSAR analysis, and the corresponding biological activities and
biophysical properties are given in Table I. Some of the anti-
arrhythmic activities (ACsg) are missing, or could not be deter-
mined with the desired accuracy, and the activities for two
chiral compounds (19 and 20) were measured using the race-
mate. Hence, several compounds from the parent data set had to
be excluded from the 4D-QSAR analysis of antiarrhythmic
activity. Likewise, the phase transition temperatures of DPPA
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liposomes (T,) and the ICs, values have not been measured for
all compounds. It was therefore necessary to construct three
training subsets from the parent data set.

Building the Molecules

All molecules were built using the building tool and
library fragments of Chemlab-II (21). The side chains were
assigned all-trans conformations. The side chain tertiary amino
groups are protonated under physiological conditions (see pKa
values, Table I). Accordingly, the compounds were built as
monocations.

Semi-empirical Calculations

Calculations at the semi-empirical level were carried out
to assign partial atomic charges and to further optimize molec-
ular geometry. The AM1 Hamiltonian, implemented in the
MOPAC 6.0 (22) program, was employed.

Molecular Dynamics Simulation (MDS)

The molecular dynamics simulation package MOLSIM
3.0 (23) was used to carry out the MDS on the AM1-optimized
molecules. The simulation conditions were as follows:

Step size: 0.001 ps

Steps: 10 000 for equilibration, 100 000 for production run
Temperature: 300 K, constant

Velocity rescaling/temperature bath: used, relaxation time 1.0 ps
Molecular dielectric: 3.5

Cutoff distance for nonbonded interactions: 8 A

Trajectory file: updated every 100 MD steps, resulting in
1000 frames

Conformational restrictions: none

Initial velocities: randomly assigned

Thermodynamic equilibrium is reached after about 5 ps in
the MDSs of each of the analogs. Therefore, two MDS runs
were performed for every analog: The first MDS lasting 10 ps
to allow equilibration, with the final geometry and velocities
written to restart files, and the second (100 ps, all conditions as
described above) to record the production trajectories used in
the 4D-QSAR analysis.

4D-QSAR ANALYSIS

Calculations of Grid Cell Occupancies

Grid cell occupancy profiles were calculated for the three
alignments defined in Fig. 1. The chosen alignment atoms
cover the entire common structural moiety of the test dataset.
Since significant models were constructed for the endpoints
ACs, and ICs, using these alignments, no other trial alignments
were examined. For T,, the transition temperature of DPPA
liposomes, several additional alignments were explored with-
out improvement in the resulting QSPR models.

A grid cell size of 1 A was used. Cells having a variance in
occupancy of less than 2% over the ensemble of all compounds
were excluded from further analysis. Only absolute grid cell
occupancy descriptors were considered in the analysis. Seven
atom types of grid cell occupancies were computed and are
listed as part of Fig. 1.
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Table I. Chemical Structures, Biophysical Properties and Antiarthythmic Activity of the Parent Dataset

X
Y ﬁ,CH,
| H
CH,

Compound 74 log P° pKa® Mol. weight®  log ACs T¢[°K]  log ICse”
# X Y z [uM] (rM]
1 H H Cl 2.21 10.59 198.72 431 302 3.85
2 H H Br 237 10.62 243.17 X X X
3 H H HO 0.35 x 180.27 3.29 314 212
4 N £ o 0.57 10.68, 7.15 165.26 vl x 3.60

| &
H,
5 H H Phenyl 2.99 9.88 240.37 4.80 2853 5.40
6 H H H 1.50 10.96 164.27 3.55 308.7 3.00
7 H H Me 2.00 10.84 178.30 4.02 303.1 X
8 H H Et 245 10.63 192.32 3.94 300.4 x
9 H H n-Pr 2.89 10.54 206.35 4.85 295.5 x
10 H H i-Pr 2.75 10.49 206.35 422 299.4 X
11 H H t-Bu 2.96 10.03 220.38 4.52 297 5.40
12 H H MeO 1.48 10.91 194.30 3.62 X X
13 H H 4-Cl-phenyl 345 9.96 274.81 5.70 X X
14 H H 4-MeO-phenyl 2.95 9.85 270.39 496 296 5.40
15 H H 4-EtO-phenyl 3.30 9.82 284.42 4.80 X X
16 +_cH, 2.62 10.27 214.33 4.52 297 435
CH,
17 H Cl MeO 1.92 10.76 228.74 444 x X
18 Phenyl H H 2.76 10.00 240.37 437 308 4.85
19 Phenyl H Phenyl 3.36 9.85 316.47 X 293.5 X
+,CH,
20 O 5;:‘ 2.59 9.93 240.37 4.13 309 X
21 H H NO, 1.50 10.74 209.27 vl 307 4.15
22 4o, 0.44 x 178.30 vl 307 3.40
&S
23 H H 4-HO-phenyl 2.10 9.32 256.37 443 348.8 4.40
24 H cl HO 0.97 X 214.71 3.82 294 X
25 < 2.17 X 284.42 vl X x
Eon
HO'
26 H H NH, 0.12 10.87,7.34 179.29 3.00 x X

¢ Measured by RP-HPLC (9)

? Measured by aqueous titration of hydrochlorides (9).

¢ Calculated, MOPAC 6.0 (22).

4 Concentration to elevate the threshold of alternating current to induce arrhythmia in isolated guinea-pig hearts by 50% (9, 29).

¢ Main phase transition temperature of DPPA-liposomes/drug mixture (Tt of unperturbed DPPA: 337 K), measured by differential scanning
calorimetry (DSC) (9, 10, 29).

/Drug concentration at which Ca%*-binding to phosphatidylserine-monolayers is reduced to 50% of control value (9,29); x: not measured; vl: very
low activity, could not be measured accurately.

The underlined values were included in the QSAR/QSPR analyses of the corresponding property endpoint.
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11 17

Alignment I: 24 - 17 - 14
Alignment II: 24 - 14 -5
Alignment I1I: 14-11-5

Grid cell Atom type
descriptor
code number

0 all
1 non-polar
2 polar / positive
3 polar / negative
4 H-bond acceptor
5 H-bond donator
6 aromatic

Fig. 1. Alignments, and grid cell descriptor codes.

The notation for reporting of grid cell data is as follows:
Digits are separated by asterisks. The first three digits are the x,
y, and z coordinates of the cell, the fourth digit defines the atom
type, see Fig. 1. For example, the descriptor (0*0*0*6) speci-
fies the occupancy of the grid cell at the origin (0*0*0) with
atoms defined as “‘aromatic” (6).

Construction of QSAR Models/GFA-PLS

The conformation-independent descriptors logP and mol-
ecular weight (MW) and the dependent variables (-log ACso,
antiarrhythmic activity; T, phase transition temperature of
DPPA liposomes; -log ICs,, replacement of “*Ca* from phos-
phatidylserine monolayers) were separately added to the grid
cell occupancy tables to complete each SAR training set. All
columns were scaled to unit variance. The GFA program, Wolf
6.2, was used to derive QSAR models (18,24,25). The regres-
sion method was PLS with three components. A mutation prob-
ability of 100% was employed in all GFA runs, i.e. at every
crossover a randomly generated, new basis function is added to
the child. The starting population comprised 500 randomly
generated models. Other GFA parameters (smoothing factor,
number of crossover operations) were varied for all data sub-
sets until optimal conditions were identified and are given in
the Results section.

The ten correlation equations (QSAR models) with the
lowest lack-of-fit score (LOF) for each trial alignment were
crossvalidated (leave-one-out crossvalidation technique, imple-
mented in Wolf 6.2; multiple linear regression is used to recon-
struct models) in order to assess their predictive ability. The
LOF, developed by Friedman (26), is a modified least square
measure and the default ranking score of the Wolf program
(18,19).

Klein and Hopfinger

RESULTS

Background

The biophysical measurements were made in an attempt to
develop indirect, but reliable, screening methods for antiar-
rhythmic activity that are independent of animal testing. Thus,
the biophysical parameters, T, and ICsy, could have been
included as independent variables in the GFA analysis against
the pharmacological endpoint. Unfortunately, the parent dataset
is rather fragmented in regard to the biophysical measures ICs,
and T,. A GFA training subset, with all requisite descriptors,
comprises no more than nine compounds of the total set. Since
statistical significance is quite limited for models derived from
such a small number of observations, we decided to construct
three training subsets using the measured properties ACsg, T,
and ICy, as respective endpoints, and to develop independent
GFA models for each of these training sets.

Correlation Between Conformation-independent Measures
and Antiarrhythmic Activity

A crosscorrelation matrix for the three conformation-inde-
pendent measures MW, logP and ICs;, and the antiarrhythmic
activity ACsg is given in Table II. Since the parent dataset con-
sists of the common measures of these properties for only nine
compounds, semiquantitative conclusions, at best, can be drawn
from this correlation analysis. Nevertheless, the results indicate
that logP, MW and ICs, are highly intercorrelated, while the
phase transition temperature does not appear to have any signifi-
cant linear correlation to any of the other biophysical properties.

Antiarrhythmic Activity: 4D-QSAR Analysis

All trial alignments yielded several GFA optimized mod-
els with r> > 0.9 and crossvalidated r> > 0.8 (see Table III a).
The best models in terms of crossvalidated >, however, were
obtained using alignment II. Therefore, models derived from
alignment IT were used in the further analysis.

Only linear basis functions were used in the GFA experi-
ments for representation of the independent variables. Our
experience using 4D-QSAR analysis suggests that a grid cell
descriptor which is not significant in linear models shows only
modest tendency to become significant when its non-linear
dependence is considered. For the fitting of conformation-inde-
pendent descriptors like logP, however, the use of non-linear
basis functions has a physicochemical meaning. LogP often

Table II. The Crosscorrelation Matrix of the Conformation
Independent Descriptors logP, MW and Tt and the
Antiarthythmic Activity —log ACso, N=9

logP MW Tt —log IG5, -log ACsp
logP 1.00
MW 0.70 1.00
Tt -0.43 0.07 1.00
~log ICs 0.93 0.83 -0.36 1.00
-log ACsp 0.93 0.85 -032 0.93 1.00




Pharmacological Activity and Membrane Interactions of Antiarrhythmics: 4D-QSAR/QSPR Analysis

307

Table IIla. Summary of Statistical Measures of Fit for the Ten Best QSAR Models
for Antiarrhythmic Activity, Alignments I-III

I I I
model LOF 2 xv-r2 LOF r Xv-12 LOF r xv-r2
1 0.07 0.93 0.90 0.07 0.96 0.93 0.08 0.93 0.90
2 0.07 0.93 0.90 0.08 0.93 0.89 0.09 0.88 0.81
3 0.07 0.93 0.89 0.08 0.98 0.94 0.09 0.95 0.90
4 0.08 0.93 0.89 0.08 0.93 0.88 0.09 0.92 0.88
5 0.08 0.93 0.89 0.08 0.95 0.92 0.09 0.97 0.93
6 0.08 0.93 0.89 0.08 0.95 0.92 0.09 0.95 091
7 0.08 0.93 0.89 0.08 0.95 0.92 0.09 0.88 0.82
8 0.08 0.93 0.88 0.08 0.95 0.92 0.09 0.88 0.84
9 0.08 0.93 0.88 0.08 0.92 0.88 0.09 0.88 0.82
10 0.08 0.92 0.87 0.08 0.89 0.84 0.09 0.88 0.82

[N = 19]; LOF: Friedman’s Lack-Of-Fit Score; xv-r%: crossvalidated r’; GFA options: 200000 Crossover

operations, Smoothing factor = 1.5

shows a non-linear relationship to activity. In this study, how-
ever, significant QSAR models were generated using only a lin-
ear functional dependence for logP.

The ten best models for alignment II are given in Table I b.
A linear crosscorrelation analysis of the grid-cell occupancy
descriptors used by the ten best scored models was performed in
order to detect pairs of cells (variables) which might be colinear.

Table IIIb. The Ten Best QSAR Models for Alignment II,
Antiarrthythmic Activity

1  -log ACsx = 6 -log ACsy=
2.61 2.66
+ 16.39 * (2*-2*11*0) +0.64 * logP
+0.65 * logP + 1.40 * (3*(0*8*3)

—2.05 * (3*2*9*1)
+ 1.46 * (3*0*8*3)

+15.30 * (2*-2*11*0)
—2.46 * (4*1%9*0)

2 -logACy= 7 —dog ACs=
2.46 2.65
+0.70 * logP +0.97 * (2*0*9*3)

+ 1.59 * (3*0*8*3) +15.59 * (2*-2*11*0)

+2.04 * (2*-2*9*6) +0.63 * logP
— 1.82 * (3*%2*%9*])
3  -log ACq = 8 —log ACsq =
2.67 2.73

+ 1.31 * (3*0%8*3)
+18.51 * (2*-2%11*0)
—2.84 * (4%1%9%(0)

+3.73 * (1*0*%9*3)
+15.01 * (2*-2*11*0)
+0.61 * logP

+0.65 * logP — 1.70 * (3*%2*9*])
—4.31* (5*0*13*1)
4 _log ACg = 9 _log ACs=
243 2.53
+7.51 *(1*-2*10%6) + 0.68 * logP
+0.72 * logP +2.08 * (2*-2*9*6)
+ 1.62 * (3*0*8+*3) + 1.04 * (2*0*9*3)
5 —log AC50 = 10 —log AC50 =
2.43 3.09
+7.51 % (1%-2%10%6) +9.77 * (2*-2%11%0)
+0.72 * logP +0.46 * logP

+1.62 * (3*0*8*3)

The first three digits are X, y, z coordinates [A] of the particular grid
cell; fourth digit: atom type (see “methods” section).

The results are given in Table IV. As expected, the occupancies of
neighboring cells tend to show a high degree of correlation. This
can, for example, be seen for the two adjacent cells (2*-2*9*6)
and (1*-2*9*6). No individual model of the ten best models,
however, contains two highly correlated variables. The tendency
to avoid redundant information can be partly attributed to the
penalty for large models, which is introduced by the LOF score.

The residuals of error (difference between calculated and
predicted activity) for the ten best models range from +0.4 to
—0.4. A linear crosscorrelation matrix of the residuals of error,
given in Table V, shows that several of these models provide
similar information, since they have high crosscorrelation coef-
ficients. That is, each model is not distinct/unique from all of
the others. It is possible to identify two apparent sub-popula-
tions, or families, of models. Models 2, 4 and 9 form one of
these families, models 1, 5, 6, 7, 8, and 10 the other. Model 3
cannot be clearly classified.

As the GFA model population evolves from its random
starting point, more significant independent variables propa-
gate. At the same time, the frequency of less significant vari-
ables decreases. Therefore, from an inspection of the variable
usage in the final population, conclusions regarding the validity
of particular variables can be drawn. The most often used
dependent variables in the final population and the ten best
models for alignment | are given in Table VI

GFA 4D-QSAR models were also constructed only using
grid cell occupancy descriptors. The best model from such a
GFA experiment has an r* of 0.90 and a crossvalidated r* of
0.85. It is noteworthy that in the resulting GFA model popula-
tion grid cell (2*-2*11*0), which is the second most significant
descriptor in the GFA population based upon grid cell and con-
formation-independent descriptors, becomes the most impor-
tant descriptor. This observation underlines the significance of
this cell (spatial location) and the robustness of the GFA/PLS
analysis.

Replacement of **Ca**-ions from Phosphatidylserine
Monolayers: 4D-QSPR Analysis

The ability to replace **Ca**-ions from phosphatidylserine
(PS) monolayers has been measured for twelve compounds.
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Table IV. Crosscorrelation Matrix for the Grid Cell Occupancy Descriptors Found over the the Ten Best 4D-QSAR Models, logP and the
Measured Activity (ACsp); Bold: Correlation Coefficient = 0.6

Meas.
2*_2*1 1*0 4*1*9*0 5*0*13*1 3*2*9*1 1*_2*10*6 2*_2*9*6 1*0*9*3 2*0*9*3 logP Activi[y
3*0*8*3
2*-2*%11*0 1.00
4*1%9*Q 0.68 1.00
5*0*13*] 0.56 0.35 1.00
3*2*9*] 0.73 0.95 0.43 1.00
1*-2*10*6 0.80 0.44 0.27 0.44 1.00
2%*-2%9*6 0.78 0.40 0.21 0.39 0.97 1.00
1*0*9*3 -0.47 045 -0.22 -0.40 -0.34 -0.37 1.00
2*0*9*3 -0.50 —-0.48 -0.23 043 -0.37 -0.40 0.92 1.00
logP 0.62 0.60 0.34 0.58 0.35 0.40 -0.67 -0.75 1.00
Meas. 0.78 0.53 0.33 0.54 0.57 0.61 —-0.48 -0.57 0.90 1.00
Activity
Although the resulting training set is small, the 4D-QSPR  DISCUSSION

analysis was successful in deriving several significant correla-
tion models. The most important statistical scores for align-
ments I to III are given in Table VII a.

Alignment I gave the best results in the GFA, as measured
by crossvalidated r?. Variable usage over the ten best models
for alignment I and the whole population is summarized in
Table VII b (individual models are not shown).

Phase Transition Temperature of DPPA Liposomes:
4D-QSPR Analysis

Table VIII a shows the statistical measures of fit obtained
for the three trial alignments. Although it was possible to obtain
excellent correlations for all alignments, the predictive poten-
tial of each of these models, as indicated by the crossvalidated
r2, is relatively poor. Alignment I yielded better crossvalidated
2 scores than the other alignments, although its other statistical
measures are of a lower quality than for alignments 2 and 3.
The variable usage over the ten best models for alignment 1,
and over the corresponding GFA model population, is given
in Table VIII b. Noteworthy is the absence of the two whole-
molecule descriptors, logP and MW, among the ten best models
(individual models are not shown).

Antiarrhythmic Activity

LogP is identified as by far the most significant descriptor.
LogP as a single independent variable in linear regression
analysis yields the following correlation equation.

—log ACsy = 2.93 + 0.61 * logP

N=19 r?=081 xv-r?=076 (1

In the best 4D-QSAR model (model 3 of Table III b), logP
accounts for about 90% of the total variance in activity. The
conformation-independent descriptor MW, on the other hand,
is only of minor significance as a descriptor.

The importance of lipophilicity on antiarrhythmic activity
is not surprising, and has been pointed out previously (e.g., by
Rauls & Baker (27)). The “screening” model is an isolated
organ. Pharmacokinetic effects play a major role in this model,
and lipophilicity, as a determinant for the penetration “potency”
of a compound, can be expected to have a large influence on the
expression of total activity. Cationic-amphiphilic drugs have
long been known to accumulate in intact heart tissue (28).

Table V. Crosscorrelation Matrix for the Residuals of Error in Predicting —-logACs,
of the Ten Best Models. Alignment IT; Bold: Correlation Coefficient > 0.6

Model 1 2 3 4 6 7 8 9 10
1 1.00

2 045  1.00

3 052 023  1.00

4 044 095 026  1.00

5 089 039 061 038 100

6 089 038 062 037 100 100

7 093 047 051 056 085 084  1.00

8 087 048 046 051 079 079 088  1.00

9 044 095 026 100 038 037 056 051  1.00

10 057 059 038 060 060 060 063 064 060  1.00
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Table VI. Descriptor Usage Over the 10 Best Models,
and Over the Entire GFA Population, Ali gnment II, ACsq

% use in 10 best % use in whole

Variable models population
logP 100.0 99.0
(2*-2*11*0) 70.0 26.6
(3*0*8*3) 60.0 12.0
(3*2*9*1) 30.0 22
(2*-2*9*6) 20.0 3.4
4*1*9*0) 20.0 1.6
all others 10.0

The first three digits are x, y, z coordinates [A} of the particular grid
cell; fourth digit; atom type (see “methods” section)

However, with the inclusion of descriptors dependent on
molecular shape, such as the grid cell occupancy descriptors,
more reliable QSAR models are obtained. The best model,
given below, consists of logP and four grid cell occupancy
descriptors. The statistical measures are better for this model
than for the single logP model. One of the grid cell descriptors,
(2*~2*11*0), is found in about 26% of all GFA QSAR models
and is, therefore, to be regarded as very significant.
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—log AC5p=2.67 + 131 *3*0*8*3) +
1851 *(2*~2%11*0)-284*(@4*1*9*0) +
0.658logP-4.31*(5*0*13*1)
N=19 r*=098 xv-r’=0.94 )

Predictions were made for compounds 4, 21 and 22 on the
basis of egs. (2) and (3) and eq. (1). Equation (2) was selected
because it is the the best model in terms of crossvalidated r%.
Equation (3) is particularly suited to complement eq. (2), since
the residuals of error for both models are nearly uncorrelated
(correlation coefficient: 0.23, see also Table V).

—log ACsp=2.46 + 0.70 * logP + 1.59 * (3 * 0 * 8 * 3)
+204*(2*-2*%9*6)
N=19 =093 xv-r’=0.89 3)

Due to their low activities, no explicit ACs, values were
available for these compounds. The predicted activity values,
ranging from 2.8 to 4.0, correspond to low-activity consistent
with experiment.

Predictions of ACsq for the two stereoisomers of com-
pound 20 were also made. The two 4D-QSAR models [egs. (2)
and (3)] each gave a predicted activity of 4.3 for both stereoiso-
mers, while the logP-model predicted 4.5. The observed value
(for the racemate) is 4.1.

Table VIIa. Summary of Statistical Measures of Fit for the Ten Best QSAR Models
for “Ca”*-Replacement from PS Monolayers (ICs), Alignments I-III

I II I

Model LOF 2 Xv- LOF r? xv-r2 LOF 2 xv-r?
1 0.18 0.95 0.92 0.12 0.97 0.93 0.10 0.99 0.62
2 0.18 0.95 091 0.13 0.97 0.90 0.13 0.99 0.58
3 0.18 0.95 091 0.14 0.96 0.85 0.13 0.99 0.55
4 0.20 0.98 0.95 0.15 0.96 091 0.14 0.99 0.52
5 0.20 0.95 091 0.15 0.99 0.87 0.15 0.99 0.51
6 0.22 0.95 0.82 0.15 0.96 0.85 0.15 0.99 0.51
7 0.22 0.95 0.79 0.15 0.96 0.83 0.15 0.99 0.48
8 0.22 0.95 0.88 0.15 0.96 0.82 0.15 0.99 0.50
9 0.22 0.95 0.88 0.15 0.96 0.81 0.16 0.99 0.48
10 0.22 0.94 0.90 0.16 0.96 0.82 0.16 0.99 0.50

[N = 12); LOF: Friedman’s Lack-Of-Fit Score; xv-r%: crossvalidated r2; GFA options: 100000 Crossover

operations, Smoothing factor = 1.2

Table VIIb. Descriptor Usage Over the 10 Best Models,
and Over the Entire GFA Population, Alignment I, ICs,

% use in 10 best

% use in whole
population

Variable models
2*(0*4*] 80
logP 60
MW 20
4*_2%6%( 20
8*1*6*0 20
all others 10

22

34

47
7
2

The first three digits are x, y, z coordinates [A] of the particular grid
cell; fourth digit: atom type (see “methods” section)
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Table VIIIa. Summary of Statistical Measures of Fit for the Ten Best QSAR Models
for the Phase Transition Temperature (T,) of DPPA Liposomes, Alignments I-III

I 11 111

Model  LOF 2 XV- LOF 2 xv-r? LOF 2 xv-12
1 37.1 0.92 0.63 8.23 0.99 0.07 7.62 0.99 0.05
2 37.2 0.92 0.62 8.98 0.99 0.15 7.76 0.99 0.13
3 379 0.92 0.62 12.6 0.99 0.11 8.38 0.99 0.17
4 379 0.92 0.62 13.1 0.99 0.06 8.53 0.99 0.18
5 38.1 0.92 0.61 13.4 0.98 0.13 9.94 0.99 0.14
6 38.1 0.92 0.62 17.8 0.99 0.08 10.0 0.99 0.11
7 38.3 0.92 0.62 18.0 0.99 0.03 10.3 0.99 0.13
8 389 0.92 0.61 20.1 0.97 0.11 10.5 0.99 0.02
9 389 0.92 0.61 20.7 0.98 -0.04 10.9 0.99 0.10
10 393 0.92 0.61 21.1 0.98 -0.01 12.1 0.99 0.15

[N = 16]; LOF; Friedman’s Lack-Of-Fit Score; xv-r*: crossvalidated r%; GFA options: 50000 Crossover

operations, Smoothing factor = 1

Graphical representations for ten conformations of com-
pounds 13 (highly active) and 8 (inactive) are given in Fig. 2.
All conformations shown are snapshots from the 100 ps MDS
production run and lie within * 2 kcal/mol from the average
energy of the MDS. The QSAR model grid cells from model 3
of Table III b are also shown.

The prediction based on the partition coefficient alone
(eqn. 1) for compound 13, the most active compound, yields a
value substantially larger than is measured. The same logP-
only model predicts too low an activity for compound 8. On the
other hand, the 4D QSAR model 3 yields good predicted activ-
ities for both compounds. This implies that the grid cell occu-
pancy descriptors for these two compounds provide important
information complementary to lipophilicity. Thus, both com-
pounds are especially suited to serve jointly for a representation
of the relationship between the conformational profiles and sig-
nificant 4D-QSAR grid cells.

Compound 13 occupies the key grid cells (4*¥1*9) and (2*-
2*11). The occupancy of the latter grid cell with atoms of any
type, shows a strong, positive correlation with activity. Cell
(4*1*9) gives a weak, negative correlation when occupied by
any type of atom. The “second” aromatic moiety of 13 can, as
well as all other biphenyl congeners in the training set, occupy
these two grid cells. Grid cell (5*0*13) is negatively correlated
to activity and is only accessible to the alkyl chains of the
p-alkoxy substituted compounds 14 and 15. Accordingly, both

Table VIIIb. Descriptor Usage Over the 10 Best Models,
and Over the Entire GFA Population, Alignment I, Tt

% use in 10 best % use in whole

Variable models population
T*-1*6*0 60 5
7*0*6*0 30 7
9*0*8*6 30 27
10*0*7*6 30 11
9*-1*8%6 30 12

all others <20

The first three digits are x, y, z coordinates [A] of the particular grid
cell; fourth digit: atom type (see “methods” section)

of these compounds exhibit a lower antiarrhythmic activity
than the p-chloro substituted compound 13.

Replacement of “*Ca**-ions from Phosphatidylserine
Monolayers: 4D-QSPR Analysis

The enhancing influence of lipophilicity on the ability to
replace “*Ca®* is not unexpected, since lipophilicity, in part,
should govern the binding behaviour of cationic-amphiphilic

(5%0*13)
5)n polar

@ (5*0*13)

(2*%-2*11) non-polar

all © @*1%9)

(3*0*8)
polar, neg.

8

correlation with activity:

© positive
@ negative

Fig. 2. Graphical representation of the grid cell descriptors of model
3, Table 4B, along with 10 aligned conformers of compounds 212 and
217, respectively. The perspective is different for the two compounds.
Key grid cells “distant” from the structures of 212 and 217 arise
because of substituents on other analogs in the training set and confor-
mational freedom available to the analogs.
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compounds to a PS monolayer. LogP and molecular weight
are correlated (r = 0.79), and therefore the presence of MW in
20% of the ten best models, and about 50% of all models can
be interpreted as a substitution for logP. This notion is sup-
ported by the fact that no single QSAR model contains both
descriptors.

Phase Transition Temperature of DPPA Liposomes:
4D-QSPR Analysis

Lipophilicity, the most important descriptor for the two
other endpoints considered in this study, is virtually uncorre-
lated to phase transition temperature, T,, and does not appear in
any of the ten best models. The independence of lipophilicity
on phase transition behaviour of DPPA liposomes has been
demonstrated in a qualitative manner previously by Borchardt
et al. (29). In this study, compounds 5 and 18 were compared.
Although these two compounds have about the same lipophilic-
ity, their potency to influence T, is different.

Using alignment 1 and the best scored model obtained for
this alignment, predictions of T, for the chiral compunds 19 and
20 were made. In both cases T, had been measured for the race-
mates. The predicted T, for compound 20 is in agreement with
the measured value. On the other hand, the QSPR model fails to
correctly predict the influence of compound 19 on the phase
transition behaviour of DPPA liposomes.

The rather low predictiveness of the 4D-QSPR models for
T, might be explained from a physicochemical point of view.
Unlike a proteinacious ion channel, the phospholipid mem-
brane may not offer spatially defined, specific binding sites,
mirrored by distinct and significant grid cell descriptors in a
4D-QSAR model.

4D-QSAR Analysis

This is only the second application of 4D-QSAR analysis
to an in vivo activity endpoint, ACs,. In the previous in vivo
application (1) logP, and lipophilicity substructure measures,
were included in the GFA descriptor basis set. However, none
of these lipophilicity descriptors survived to be among the
descriptors of the best 4D-QSAR models. Thus, it is encourag-
ing from this study to find logP the major descriptor for the best
ACs, models, and used in combination with significant grid cell
occupancy descriptors.

4D-QSAR analysis has not been used in QSPR model
development previously. The ICs, and T, QSPR models devel-
oped using 4D-QS AR analysis seem plausible. The lack of pre-
dictiveness in the T, models may be a reminder of the
limitations of using a QSAR approach highly dependent on
spatial properties. If the endpoint property (T,) is not dependent
on specific spatial interactions, then reliable QSAR models
cannot be expected. This reasoning supports the use of “2D”
QSAR descriptors as part of the basis set of trial descriptors in
the GFA phase of 4D-QSAR model development.
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